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The force F(x)  and torque G(x) acting on a conducting body or particle suspended 
at position x in a magnetic field Re (&x) e-'"') are determined to leading order in the 
ratio of the scale a of the particle to the scale L of the field. When the particle is 
spherical, F decomposes naturally into an irrotational 'lift ' force FL and a solenoidal 
'drag' force F related to G by 

FD+iV I\ G = 0. 

This relationship is important when the action of the field on a suspension of such 
spheres is considered, because it implies that the net effective force per unit volume 
acting to generate bulk flow is zero in any region where the concentration c is 
uniform. However, non-uniformity is generated by the force ingredient FL and bulk 
flow is then generated through interaction of G and Vc. These effects are 
demonstrated for two examples involving rotating and travelling fields. Interactions 
of a finite number N of spheres are also considered, and in particular it is shown that 
when the field is a uniform rotating one, the governing dynamical system is at 
leading order Hamiltonian with four independent integral invariants. When N 2 4, 
the system in general exhibits chaos. 

1. Introduction 
When an electrically conducting particle is suspended in an ax.  (time-periodic) 

magnetic field, electric currents are induced in the particle ; these interact with the 
applied field to give a Lorentz force distribution, which has a mean (i.e. time- 
averaged) part, and a fluctuating part. There is then in general a total mean force F 
and torque (or couple) G acting on the particle. 

Although this type of induction problem is classical in character (Lamb 1883), 
there are certain features that do not seem to be widely understood. The features 
that we shall focus on in this paper are well illustrated by three different 
configurations, sketched in figure 1 (a-c), which are believed to be prototypical. The 
first (figure 1 a) is the rotating field configuration, in which a uniform field is caused 
to rotate with angular velocity o by the use of three-phase windings in the external 
coils carrying the source currents. If a conducting sphere is suspended in this field, 
then it experiences a torque G tending to rotate it in the same sense as the rotation 
of the field. If the sphere is suspended on a wire, it  will rotate until the 
electromagnetic torque is balanced by the torque transmitted through the twisted 
wire and will then attain a position of equilibrium. This mechanism was first 
identified by Braunbeck (1932). If, on the other hand, it is suspended in a (non- 
conducting) viscous fluid, then it will rotate with angular velocity f2 determined by 
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FIGURE 1. Prototype fields, and their effect on a suspended sphere: (a) rotating field; 
(b)  travelling field ; (c) levitating field. 

the condition that the sum of the electromagnetic and viscous torques acting on the 
sphere be zero. 

The second configuration (figure l b )  is that of the travelling field, in which the 
applied field has a progressive wave form - ei(kz-ot), again through the use of three- 
phase external windings. If a conducting sphere is placed in the symmetric position 
P indicated in the figure, then it experiences a ‘drag force’ P in the direction of 
travel of the wave, and tending to accelerate the sphere in this direction. If the sphere 
is surrounded by viscous fluid, then this acceleration will be arrested when the force 
FD is balanced by the viscous drag acting on the sphere. 

The third configuration (figure 1c)  is that of the ‘levitating field’ which may be 
produced by single-phase source currents. There is then a levitating or ‘lift ’ force FL 
acting on a suspended sphere in the direction indicated. 

In  more general situations, we shall find that the body experiences a torque G and 
both force ingredients FD and FL simultaneously. (For example the sphere in the non- 
symmetric position Q in figure 1 b experiences a force P + FL and a torque G in the 
sense indicated.) These depend on the position vector x of the centre of the sphere, 
and we shall find that there is a simple relation between the force ingredient P ( x )  
and the torque G(x), namely, 

F“‘ = -iV A G. ( 1 . 1 )  

It is worth noting that in both the problems of figures 1 (a )  and 1 ( b ) ,  it is the relative 
motion between sphere and field which leads to induced currents and so to the 
Lorentz force distribution. Thus, in the travelling field case (figure 1 b ) ,  in a frame of 
reference moving with the field (i.e. with velocity V = (o/k, 0, 0 ) ) ,  the field is at rest, 
and the sphere moves with velocity - V. The mean drag force FD acting on the sphere 
is of course unaffected by this change of viewpoint (provided V / c  4 1 and relativistic 
effects are negligible). 
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The rotating field case (figure la)  is a little more subtle. Relative to a frame of 
reference rotating with angular velocity w ,  the field is a t  rest, and the sphere moves 
in a circular orbit with angular velocity - w with synchronous rotation relative to its 
centre (so that the same point of the sphere is always nearest to the centre of its 
circular orbit). The motion of the sphere thus consists of translation V plus rotation 
- w ,  but it is only the rotation (or ‘spin’) that induces currents (the translationally 
induced electromagnetic force V A B being annulled by an electric field E = - Y A B 
established in the moving conductor by the spontaneous appearance of a surface 
charge distribution). The torque G acting on the sphere is then associated with its 
spin alone, and does not depend on the radius of its orbital motion. 

The theory for determination of P, FL and G will be developed within a general 
framework in $2, under the assumption that the conductor is small in linear extent 
compared with the lengthscale of variation of the applied field ; the case of a spherical 
conductor is solved completely. 

This theory serves as a preliminary for consideration of the effect of a time-periodic 
field on a dilute suspension of conducting particles. This problem is interesting from 
a fundamental point of view, because it is one of the few situations in which a torque 
distribution per unit volume (as opposed to a force distribution per unit volume) may 
be applied to a medium, the resulting stress tensor then being non-symmetric. (There 
are here some points of contact with the theory of ferrofluids in rotating fields - see 
Rosensweig 1985, chap. 8.) 

We start in $3 with consideration of the problem of a suspension of N spheres in 
a viscous fluid permeated by a uniform rotating magnetic field. Interactions between 
the spheres are two-fold : first, each sphere tends to move with the local fluid velocity 
resulting from rotation of all the other spheres - in this, the behaviour is very like the 
‘N-vortex ’ problem of classical hydrodynamics in which each vortex moves in the 
velocity field associated with the others. There is however a second effect, relatively 
weak for a dilute system, arising from the fact that each sphere ‘sees’ not a uniform 
magnetic field but a field distorted by the presence of the other spheres, and therefore 
experiences a force F as well as a torque G. This effect is analysed for the two-sphere 
problem, and the sphere trajectories calculated. 

When the system is sufficiently dilute for the latter effect to be negligible, the N- 
sphere problem is indeed closely analogous to the N-vortex problem. When the 
Reynolds number based on the spin angular velocity $2 of each sphere is small, the 
sphere centres all move in planes perpendicular to $2, the associated dynamical 
system being Hamiltonian and autonomous ($4). As well as the Hamiltonian H ,  there 
are three further invariants, the 3-sphere problem being integrable, and the N-sphere 
problem in general non-integrable for N 2 4. Thus when N 3 4, and when the initial 
configuration has no particular symmetry, each sphere follows a chaotic trajectory 
in the plane to which it is confined. 

The suspension proper (with concentration c + 1) is treated in $55 and 6. The force 
ingredients FL and P translate into force densities cRL and cFD where, for a 
suspension of spheres, RL and are respectively irrotational and solenoidal. There 
is also a torque density cG, and the efeetiwe force density driving a bulk flow is 

CfiL+Cp+iv A (&). (1.2) 

When c is uniform, and when the suspended particles are spheres, this effective force 
is irrotational (this follows from (1.1)) and no bulk flow arises. However, the 
levitating force c p  generates inhomogeneities of concentration which then interact 
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with e through the term -$ h Vc to produce a bulk flow. This flow is determined 
in 96 for the case of a rotating multipole field, and for the travelling field. The various 
threads are drawn together in the concluding $7. 

2. Action of a time-periodic magnetic field on a conducting particle 
Consider then a time-periodic magnetic field of the form 

Bo(x, t )  = w)(x)  cos wt +qi)(x) sin wt = Re (B0(x) e-iot), (2.1) 

where B0 = @) + i q ) .  In what follows, the real part of expressions like Bo e-'" will 
be understood. In the special situation in which Bf)(x)  and H:)(x) are everywhere 
parallel, we may write Bo = B(z)ei#(X), so that 

(2.2) 

and the field is a single-phase field. Generally, however, Bii) and BC,) are non-parallel, 
and we have a multiphase field. Note that, with * representing a complex conjugate, 

(2.3) 

Bo(x, t )  = Bgyx) cos ($ (x) -wt ) ,  

iBo A B,* = 2s:) A H:), 

and this is real and non-zero for a multiphase field. 
We suppose that the field Bo(x, t )  is produced by a system of currents in coils or 

conductors that are external to a domain 9 in which the background medium is non- 
conducting. Hence Bo(x)  is a potential field in 9, i.e. 

Bo(x) = vYo, v*Yo = 0, (2.4) 

where !@o(x) is a complex-valued scalar field. The lengthscale L characteristic of 
variation of Bo (defined by L-' - ~ ~ V ~ o ~ ~ / ~ ~ ~ o ~ ~  where (I.. .(( is some suitably defined 
norm) is determined by the scale and remoteness of the source currents. 

Suppose now that we introduce a particle of linear scale a small compared with L,  
and uniform conductivity CT, into this field. Let 6 = (2/p0aw)+ where po = 4x x lo-' 
(S.I. units), and let 

(2 .5)  

a dimensionless parameter which plays an important part in what follows. When 
h B 1, 6 is the familiar skin depth to which the magnetic field penetrates. When 
A 5 1, the field penetrates throughout the conductor. 

Let j ( x , t )  =j(x)ewiwt be the current induced in the particle. Then the dipole 
moment of the associated magnetic field is p ( t )  = fie-iwt where 

A = u/6 = (&a"po a w p ,  

V being the volume occupied by the particle. Since the induction problem is linear, 
there must exist a linear relationship between jl and Bo(x). Taking origin at  the 
centre of volume of the particle, this linear relationship may be expressed in terms 
of the value of Bo and its derivatives at  x = 0:  
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m 

FIQURE 2. Elementary representation of a dipole in terms of magnetic poles f m at separation 
ax. The resultant force F and torque G are given by (2.10). 

where aij, Pi jk ,  . . . are dimensionless tensor coefficients dependent on h and on the 
shape of the particle. This is effectively a power series in the small parameter a/L, 
since the nth derivatives of B, are of order L-nJBol. 

If the particle is spherical, then there is a remarkable simplificationt of the series 
(2.7) ; for then the tensors au, &k, . . . must be isotropic, i.e. 

= P t j k  = O ,  y{jpZ = y'l's$j f Y'2)sik + Y(3)siZ sjfi, * * * (2.8) 

Hence, firstly, all the odd-derivative terms of (2.7) vanish. Secondly, since V - 8, = 0 
and (from (2.4)) VzBo = 0, each contribution to the third term of (2.7) vanishes, and 
afortiori, all higher-order even-derivative terms vanish also ! Hence we are left with 

ji = 4npu;1aa3B,, (2.9) 
where a(h) is a complex-valued scalar, which may be described as the 'induction 
coefficient'. It is important to emphasize here that 8, in (2.9) is evaluated at the 
centre of symmetry of the particle, x = 0. 

Consider now the mean force F and torque G acting on the particle. Regarding the 
dipole p as a pair of magnetic poles -t m at vector separation 6x (figure 2), elementary 
considerations give 

and 
(2.10) 

where (. . .) denotes the time-average. A formal proof is given in Appendix A that 
these are indeed the correct expressions for F and G at  leading order in a/L. 
Appendix A also indicates how corrections to these expressions at order (a/L)' 
(associated with the induced quadrupole) may be obtained. 

Substituting (2.9) for the case of a sphere, we have immediately 

F = 2 7 r ~ ~ p ; ~  Re (a&, V@), 

G = 2na3p;* Re (aB, A &). 

(2.11a) 

(2.11b) 

(2.12) 

Using (2.3), the expression for G may be written alternatively 

G = 4~a~p,'a'')~~' h B", 0 

t It may be worth noting that the same simplification occurs if the particle has cubic symmetry. 
or the symmetry of any other regular solid. 
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where a = a(') +ia"). Moreover, using (2.4) it is easy to show that F = F + F D  where 

(2.13) 

and P = - 2 ~ ~ 3 ~ ; l  a(i)V A ( ~ r )  0 A Bii)). (2.14) 

Here, and subsequently, FL, F" and G can be regarded as functions of the position 
x at which the centre of the sphere is placed. Note that F ( x )  is an irrotational force 
field, while P ( x )  is solenoidal. 

Note also that a non-zero torque G is associated with the imaginary part of a: (i.e. 
with phase-lag between Bo and p) and with non-parallel real and imaginary parts of 
Bo (characteristic of a multiphase field). Such a field locally rotates with fluctuating 
amplitude and period 2n/o in the plane of Bg) and Bt) .  The field F' is evidently 
related to G by 

FD+aV A G = 0. (2.15) 

FL = 2na3p;1a(r)(@;) vB(r) 0 +BC,') . V B ~ ) )  = na3p;1a(r)vlB 0 12, 

This simple result holds however only under the isotropic condition atj = a:&. 
Consider now the three prototype configurations of figure 1 (a+). 

(a)  Rotating field (figure 1 a )  
Let Bi) = Bo( 1,0,0), Bi) = Bo(O, 1 , O )  in Cartesian coordinates. Then 

s:) A s;) = B;(O,O, I), (2.16) 

and so from (2.12) 

G = 4np;l a3Bi @ ( O ,  0 , l ) .  (2.17) 

We expect that the torque should be in the same sense as the field rotation, i.e. 
G, > 0, and so &(A)  should be positive for all A. This is confirmed below. Note that, 
since Bo is uniform, F = 0 for this configuration. 

( 6 )  Travelling Jield (figure 1 b)  
Let 

@o(x) = A eibx sinh ky (k > 0, IyI < b)  (2.18) 

(2.19) so that 

Hence from (2.13) and (2.14), we find easily 

Bo(x) = V g 0  = Ak(i sinh ky, cosh ky, 0) eikx. 

F = 2np;l a31AI2 k3& sinh 2ky t$, (2.20) 

and F' = 2np;' a3IAI2 k3a") cosh 2ky gX. (2.21) 

G = - 27cp;l a3(AI2 k2a(') sinh 2ky gZ. (2.22) 

Thus, for the sphere P in figure 1 ( b )  on the plane of symmetry (y = 0)  we have 
F = 0, G = 0, P = 2na3p;11A(2kaa(i)dz. Note that here, the in-phase component of 
the dipole moment gives a contribution to the force which averages to zero. For 
the sphere Q, however, FL, F" and G are all non-zero. Again, since, we expect the 
drag force F' to  be in the direction of travel of the field, i.e. the positive x-direction, 
we expect that &)(A) > 0 for all A. 

As noted above, the result FD +iV A G = 0 does not hold if at, is non-isotropic. In 
this more general situation, we define F' as that part of the force involving the 

Moreover, from (2.12), 
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imaginary part a#) of at,. Then for example, if au = diag (a, p, y ) ,  for the travelling 
field configuration we find 

( P + i V  A G), = 7 ~ ~ ~ ~ O ~ l A 1 ~ k ~ ( a ( ~ ) - - ~ ~ ) ) .  (2.23) 

Let 
(c)  Levitating Jield (figure 1 c)  

Po = A cos kxe-ku (k > 0, y > 0) (2.24) 

so that Bo = VYo = -Ak(sin kx, cos kx, 0) e-ky. (2.25) 

Then obviously I?@ A I?: = 0, so that G = 0 no matter where the sphere is placed, and 
so FD = 0 also. Here therefore it is the out-of-phase component of the dipole that 
gives a contribution to the force that averages to zero. However, from (2.13) we find 
an in-phase contribution : 

F = - 2np;l &(r)]A(z k3 e-2kY& #. (2.26) 

We expect that this force will be upwards since the mean magnetic pressure is greater 
on the lower surface of the sphere (where the mean field strength is greater). This 
means that a(')@) should be negative for all A. This also is confirmed below. A sphere 
of mass rn will then be levitated provided 

27cp;l u3(a(')I IAI2 k3 > mg (2.27) 

and will then rise to an equilibrium height Y given by 

(2.28) 

It remains to find the function a(h) = a(')(A)+idi)(h). The details of this 
calculation are given in Appendix B, and the result in the case of a spherical particle 
is 

3(sinh 2h - sin 2 4  @,'''(A) = -;+ 
44 C O S ~  2A - cos 2h) ' 

3(sinh 2h + sin 2A) a'i'(h) = -- 3 +  
4h2 4h( C O S ~  2h - cos 2h) ' 

(2.29) 

(2.30) 

These functions are plotted in figure 3, and the expectations a(')(A) < 0, a(')(h) > 0 for 
all A are indeed confirmed. 2.4. 
Note also the asymptotic behaviour : 

(i) h 4 1: - _ _  &A4, a@) - &I2, (2.31) 

has a maximum value agLx z 0.178 when h 

(ii) h % 1 
3 3 3  

4A 4h 4h2' 
~ -$+-, - (2.32) 

the last results being exact to within exponentially small terms. In  the limit h = co 
(corresponding to a perfectly conducting sphere), a = -a and the field is totally 
expelled from the sphere; in this limit, both G and F) are zero, but the lift force F 
is generally non-zero. 

Consider some orders of magnitude for the case of spheres of aluminium for which 
7 = (p0v)-l x 0.16 mz s-l. To achieve maximum drag or torque ( A  x 2.4), we then 
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FIGURE 3. The real and imaginary parts of the induction function a(h) = a(’)(A) + ia(’)(h) for a 
sphere. 

require a2w x 1.8 m2 s-*. For a frequency of the order of megahertz (w - lo6 s-l), this 
is achieved with spheres of radius a x 1.3 mm. If such spheres are suspended in a 
non-conducting liquid, they can be levitated by a field B of order 10-1 T( = lo3 G). 
Incidentally this would be an unconventional and rather dramatic method of heating 
the liquid! These orders of magnitude appear quite feasible, so that the effects 
described in this and subsequent sections should certainly be amenable to 
experimental verification. The effects must inevitably become much weaker as the 
particle size decreases if only because of the practical upper limits on the frequency 
and strength of magnetic fields that may be produced in the laboratory. 

3. Interaction of two spheres suspended in a viscous fluid and subjected to 
a rotating field 

We have seen that a single sphere subjected to a uniform field of strength B,, 
rotating in the (5, y)-plane, experiences a torque 

(3-1)  G = 47ra3p;l Bi di)sZ. 
Suppose now that the sphere is surrounded by incompressible fluid of density p and 
kinematic viscosity v ;  that, under the action of the torque G, it  rotates with constant 
angular velocity 51; and that the Reynolds number is small, i.e. 

Re = SZa2/v 4 1 ,  (3.2) 

so that all inertial effects are negligible. Then the velocity field in the fluid (see, for 
example, Landau & Lifshitz 1959, p. 68) is 

(3.3) u ( x )  = (a A ~ ) ( a / r ) ~ ,  

x being measured from the centre of the sphere, and the viscous torque on the sphere 
is 

G, = - 87~pva~51. (3.4) 

In equilibrium, G+G, = 0, i.e. 

51 = (Bi di)/2pOpv) sz, (3.5) 

and the condition (3.2) is satisfied provided 

VZ, & 2 / 2 v 2  Q 1 (3.6) 
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FIQURE 4. (a) Mutually induced rotation of two equal spheres subjected to a rotating magnetic 
field. Each sphere spins with angular velocity 0 (given by (3.5)) and moves in the couplet field (3.3) 
of the other sphere. (b)  Meridional projections of sphere trajectories, &B given by (3.16). 

where V, = B,/(y,p)f is the AlfvGn speed associated with B,. Note that the angular 
momentum of the sphere is instantaneously determined in this approximation. 

This derivation is only valid provided the deduced angular velocity 51 is small in 
magnitude compared with the angular velocity w of the field, since otherwise the fact 
that the particle is rotating would have to be taken into account? in the induction 
problem. This requires that 

M2 4 4h2/a"'(h), (3.7) 

. .  where M = V, u/(~ly)f is the Hartmann number. 
I ~. 
Suppose now that we have two equal spheres with centres at  x l ( t )  and x2(t), where 

Ix, -x,I S= a. Then the dominant interactive effect is given by the tendency of each 
sphere to move in the velocity field induced by rotation of the other. Consider first 
this effect alone ; the equations of motion are then 

3 -_--- dx1- dx2 - A (Xl-X2)(E) , 
dt dt rl . 

where r12 = Ix, - xll. Hence the midpoint f = $(x, + x,) of the line of centres remains 
fixed. Taking this point as origin and x, = x, x2 = -x, r = 1x1 = k12, we have 

so that r remains constant, and the point x ( t )  rotates about an axis through x ( = 0) 
with angular velocity @(u/r)*  (figure 4u). 

There is a correction to this behaviour at  higher order in (a / r )  resulting from the 
fact that each sphere experiences a force fF due to the magnetic field gradient 

t It is not in fact difficult to do this - see Moffatt (1980) - since the 'inducing' angular velocity 
o need merelv be redaced bv o-n. 
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induced by the presence of the other sphere, thus giving an additional velocity & V 
where, assuming a Stokes drag, 

V = (6s~pva)-~ F. (3.10) 

The field in the neighbourhood of the sphere at x, (= x) is to good approximation the 
basic uniform field plus the dipole perturbation associated with the sphere at 
x, (= -x), i.e. 

a2 (I). " -  
B, = Bob + $au3Boj - 

axtax, r 

From (2.11u), the force on sphere 1 is then 

(3.11) 

(3.12) 

With Bo = ( B 0 / d 2 )  (1, i, 0) ,  as appropriate for a field of strength B, rotating in the 
(2 ,  y)-plane, this reduces to 

3na6(al Bi F =  { (4z2 -R2) R + (22 - 3R2) z}, 
8Po r7 

(3.13) 

where R = (2 ,  y, 0) ,  z = ( O , O ,  2 ) .  Similarly, the force on sphere 2 is - F. The additional 
velocities V are then always in the meridian plane which rotates with the spheres. 
With coordinates (R, 4, z )  (and r2 = R2 + z 2 )  the corrected vector equation 

_ -  
dt 

(3.14) 

has components 

, (3.15a, b,  c) 
dR (4z2--R2)R d$ Oa3 dz (2z2-3R2)z -=c _ -  
at r7 ' dt 4r3 ' dt r' 

-- -- - C  

where C = a51aI2 PA/16vpO. The R and z equations have an integral 

- const. 
z R 2  

(R2 + z2)t - 
(3.16) 

and the spheres therefore move on these curves on a meridian plane g5 = +( t )  which 
rotates according to (3.15b) (figure 4b). The description is of course valid only for so 
long as r B a. 

Note that the ratio of the second term on the right of (3.14) to the first has order 
of magnitude 

(3.17) 

and is small provided (3.18) 

Under this condition (satisfied provided h is not too large), the relative drift 
associated with the forces k F is weak. When more than two spheres are considered, 
the separation of any two centres changes because of perturbations associated with 
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other spheres, and it then seems reasonable to neglect the interactive force f F in a 
first approximation. 

There are of course further higher-order effects which we have ignored in the above 
treatment. For example, the velocity - V of sphere 2 induces a velocity of order 
I V(a/r)l in the neighbourhood of sphere 1 ; this leads to a further term on the right 
of (3.14), but smaller in order of magnitude than those already exhibited. Equation 
(3.14) is a t  best a reasonable approximation, uniformly valid (for all A )  when 
a/r  4 1. 

4. Interaction of N spheres 
Suppose now that we have N equal spheres with centres at xn(t) (n  = 1,2 , .  . . ,N) 

and separations r,, = ~x,-x,J. Let r be the minimum separation; then under the 
condition (3.18), the equations of motion at leading order are 

n 

-- dxm - a A x’ (X, - X,) 
dt 

where the prime on the summation indicates that the term for which n = m is 
omitted. With = ( O , O , i 2 )  and x, = (x,, ym, zm), we have immediately from (4.1) 

- dzm = 0, i.e. z, = Z,(const.), 
dt 

i.e. each sphere centre moves on a plane z, = 2,. Its coordinates on this plane are 
easily seen to satisfy 

where (4.4) 

The equations (4.3) (for m = 1,2, .  . . ,N) constitute an autonomous Hamiltonian 
system of order 2N. An immediate integral is 

H(x,, ym, 2,) = const. (4.5) 

The similarity with the N-vortex problem of classical hydrodynamics is now clear, 
only the Hamiltonian H having different form. The following discussion is guided by 
that for the N-vortex problem (Aref 1984) ; it admits trivial extension to the case of 
N spheres of di#erent radii and/or conductivities. Note first the obvious further 
integrals of the system (4.3), (4.4) : 

Hence the three-sphere problem (N = 3) is described by a sixth-order system with 
four integrals, all of which are independent. It is therefore integrable, the mth sphere 
centre following a quasi-periodic orbit in the plane zm = 2,. Note however that 
inclusion of the weak forces of interaction F,, between the spheres (as discussed 
in the previous section) will probably trigger chaotic behaviour even for the three- 
sphere system. 

For N = 4, the system is eighth-order, with four independent integrals, and the 
motion of the sphere centres may be expected to be generally chaotic in these 
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(4 (b) 

FIGURE 5. Trajectories for the four-sphere problem, each sphere moving in the couplet fields of the 
other three: (a)  initial positions (+2, + 1 )  (marked by +); (b )  same as (a) except that sphere at 
( 2 , l )  is moved to initial position (2.2, 1 ) .  2, = 0 for all n. Case (a )  shows a quasi-periodic orbit; in 
(b)  the symmetry is broken, and the orbit is chaotic. 

circumstances. This prediction is qualitatively confirmed by numerical integration : 
figure 5(u )  shows the orbit of one sphere starting from an initial condition in which 
the four spheres are at  the corners of a rectangle ( f 2, f 1) ; here the symmetry of the 
system implies that (x3, y3) = - (xl, yl) and (xa, y4) = - (x2 ,  yz) for all t ,  so that there 
are four degrees of freedom and two non-trivial integrals ( H  and D ) ,  the system being 
therefore integrable. If however the initial rectangle is perturbed (figure 5 b ) ,  then the 
symmetry is broken and chaos ensues. Thus the behaviour is qualitatively similar to 
that of four interacting point vortices (Aref & Pomphrey 1982). 

5. Behaviour of a dilute suspension of spheres 
Suppose now that a dilute suspension of conducting spheres is contained in a fluid 

domain 9 with fixed rigid boundary ZB, the whole being subjected to the general 
periodic magnetic field (2.1). We shall suppose that the volume concentration c of 
spheres is small (c Q I ) ,  and we shall allow for the possibility that c may be non- 
uniform and unsteady, i.e. c = c(x, 1 ) .  

As shown in $2, each sphere experiences a force F = FL +P and a torque G given 
by (2.12)-(2.14). The torque is transmitted to the fluid by the Stokes mechanism 
described in $3 ; similarly the force F is transmitted to the fluid through the relative 
velocity V = (6npva)-' F between sphere and fluid that it generates and the resulting 
Stokeslet flow. Viewed macroscopically, there is therefore a body force distribution 
c(pL + pD) and a body torque distribution cG (both per unit volume) where 

FL = $p;1&)V(@2, = -tV G, (5 . la ,  b )  

G = 3~;la(~)(@:)  A B(i)). 0 ( 5 . 1 ~ )  

Note again that particle momentum and angular momentum are instantaneously 
determined in this approximation, effects of inertia being neglected. 

It has been shown by Batchelor (1970) that, whenever a body torque distribution 

- 
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cG(x) is present, angular momentum balance for a 'macro-particle ' requires that the 
bulk stress tensor at, must have an antisymmetric part given by 

* 

(.I;' = ' (a .  2 t f - a j t )  = &jkCGk,  (5.2) 

with a corresponding contribution to the Navier-Stokes equation 

Hence the Navier-Stokes equation for the bulk motion u(x ,  t )  becomes 

(5.3) 

(5.4) 

If c is uniform, then the terms involving %" and exactly compensate by virtue 
of (5.lb); moreover, since FL is irrotational, the term cFL may be absorbed in the 
pressure term through definition of a modified pressure 

P = p-&(pop) -~a( ' )~Bo~2 .  (5.5) 
Apart from this pressure adjustment and the appearance of a (generally non- 
uniform) antisymmetric stress g$), there is no effect at the macroscopic level, and in 
particular no macroscopic velocity field is generated. This is an astonishing 
conclusion, given that each conducting sphere generates a couplet and a Stokeslet by 
virtue of its rotation and translation relative to the fluid. It just so happens that P 
and G are related by the special condition P +iV A G = 0, which leads to vanishing 
of the rotational part of the mean driving force in (5.4) when c is uniform. Hence the 
net effect of superposition of all the couplets and Stokeslets is zero. 

A similar conclusion has been reached in a related, but more restricted, context by 
Jansons (1983) who found that a homogeneous ferromagnetic fluid in a circular 
cylinder subjected to a unijorm rotating magnetic field is not set in bulk rotation, 
although each microscopic dipole rotates with the field. The antisymmetric stress 
established in the fluid is absorbed at  the boundary which exerts a couple equal and 
opposite to the integrated torque acting electromagnetically on the fluid. The fluid, 
although at rest (in bulk), is stressed in the same way as would be an elastic medium 
subjected to a torque in 9 but fixed on 8 9 .  The way in which the phenomenon of 
magnetically induced rotation may be applied in the context of viscometry has been 
discussed by Brancher (1988). 

6. Role of the particle force F in generating inhomogeneity 

relative to the background fluid where 
Each sphere in the suspension considered moves with velocity V = VL+ VD 

with 

This relative velocity is large compared with any bulk velocity generated, which is 
at most of order IVcl. Hence c(x, t )  satisfies a conservation equation which, at leading 
order, is 

ac -+v (VC) = 0, at 
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FIGURE 6. Lift force on suspended spheres: (a) a rotating field provides a force F towards the 
centre of rotation so that all spheres are driven to the interior of the domain 9 ; (b)  a single phase 
field of the form (2.25) produces a force field F in the y-direction, so that all spheres 'sediment' 
towards the lower boundary. 

(6.4) 
ac -+v.vc=-cv. v=-cv .  VL. at or 

Since V . VL is in general non-zero, this means that c will not remain uniform even 
if uniform initially. In fact, from ( 6 . 1 ~ )  and (2.13), 

V VL = (a2cd')/6pOp~) Vzl&2, (6.5) 

so that inhomogeneity must develop if V2)&(2 =!= 0. 
There is a further source of inhomogeneity arising from conditions at  the boundary 

3 9  of the fluid domain, where in general V - n =I= 0. If V n < 0 (where n is the unit 
outward normal) then all suspended spheres near the boundary move into the 
interior of 9 leaving a layer near a 9  where c = 0. If V - n > 0 on the other hand, then 
spheres are driven onto the boundary just as in a process of gravitational 
sedimentation of particles onto a solid base. Both situations can arise, as illustrated 
in figure 6(u, b) .  

As soon as inhomogeneities of c appear in the suspension, a bulk flow will in general 
appear also, as may be seen by rewriting (5.4) in the form 

The term -$ A Vc is now directly responsible for driving the flow. Moreover, since 

V A (cFL) = -FL A VC, (6.7) 

the term cFL may also generate vorticity like the buoyancy force in a Boussinesq 
fluid. The former effect is present in the prototype configurations of figures 1 (a,  b ) ,  
and will now be analysed in detail. 

6.1. Rotating multipole field 
Suppose that 23 is the cylindrical domain r < b, and that 

yo = Arm eime (6.8) 

with cylindrical polar coordinates ( r , O , z ) ,  where m is a positive integer. The case 
m = 1 gives F = 0, G = const. and cannot therefore generate a bulk flow if, as we 
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w 

FIQURE 7. Action of a rotating field (m = 2) on an initially uniform suspension. The spheres are 
uniformly concentrated within a shrinking cylinder of radius be-'t, and a vortex flow with uniform- 
vorticity core is established. 

shall suppose, the concentration c is initially uniform. We shall therefore suppose 
that m > 1. The behaviour is sufficiently well illustrated by the choice m = 2, for 
which we find from (2.13) 

FL = - he?,,, (6.9) 

where k = - 1 6 7 ~ a ~ g  a(')(AI2 (> 0). (6.10) 

The corresponding inward particle velocity is 

VL = - sre?,., (6.11) 

where s = (67cpva)-l k. The conservation equation (6.3), with effective initial 
condition 

then has solution 

co eZet (r < b e-st) 

(0  ( r  > be-8t), 
c(r , t )  = 

(6.12) 

(6.13) 

i.e. the suspended spheres are simply uniformly concentrated within a contracting 
cylinder of radius R(t) = be-st. The situation is shown in figure 7. 

The torque distribution d for this field is 

6 = G,r2& (6.14) 

where 

Hence - 

so that we have an effective force in the 0-direction concentrated on r = R(t) .  

are negligible then, from (6.6), v(r, t )  satisfies 
The driven flow has the form u = (0, V ( T ,  t ) ,  0) and if we suppose that inertia forces 

(6.17) 
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The solution satisfying v(b) = 0 and v(0) finite is 

(6.18) 

The circulation at  r = R ( t )  is 

K = 27~Rv(R, t )  = 2nG0 c0(pv)-l b( 1 -e+7, (6.19) 

tending to the constant value 2nG0 c,, blpv as t -+ 00. Thus the asymptotic flow is that 
due to a concentrated line vortex with superposed rigid-body rotation to satisfy 
v(b) = 0. 

6.2. Travelling Jield 

Yo = A eikx sinh Icy 

Now let 9 be the channel lyl < b and let 

(6.20) 

as in $2. Then FL is given by (2.20) so that the concentration c(y, t )  satisfies 

ac a 
at ay 
- = - (V, c sinh 2ky), 

where V, = -$ca2Bla k3a(')(popv)-' (> 0), 

and we require the solution satisfying the initial condition 

(6.21) 

(6.22) 

(6.23) 

First consider the equation 

- dY = - V,sinh2kY 
dt 

(6.24) 

with initial condition Y(0) = Y,. The solution is given by 

tanh kY(t)  = e-"Okt tanh (IcY,) (6.25) 

and, in particular, the layer of spheres initially at (or very near) the boundary 
y = b moves at time t to 

y = q ( t )  = k-' tanh-' (e-2"okt tanh kb). (6.26) 

The solution of (6.21) for Iyl < q ( t )  may be found by the change of variable 
X = tanh ky, and is 

(6.27) 

Also c(y,t) = 0 for IyI > &(t).  There is a discontinuity of c across y = q ( t )  given by 

Ac = [c] = - co (e2"okt cosh2 kb - eTzvOkt sinh2 kb) (6.28) 

(see figure 8). 
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X X 

((I) kb Q 1 (b) kb % 1 

FIGURE 8. Action of a travelling field on an initially uniform suspension of spheres in the channel 
Iyl < b. The situation is symmetric about y = 0, and only the upper half of the channel is shown. 
The suspension is concentrated a t  time t within the slab IyI < T( t ) .  (a) kb < 1 : a piecewise-constant 
vorticity distribution is established. (6) kb P 1 : a 8-function in concentration appears on y = Y,( t ) ,  
and this generates an  associated vortex sheet in the bulk flow. 

If kb 4 1 ,  the situation is very similar to that considered in the previous example. 
In  this case, c(y, t )  - c,,e2"oLt for Iyl < & ( t )  - beT2"ott, so that the velocity 
u = u(y ,  t )  t?z is driven by the discontinuities of c across y = f Y , ( t ) .  Neglecting inertia, 
and with Gi = p;' 2xa31A12 Pas, we find 

(6.29) 

so that, as t --f 03, a vorticity discontinuity 

[o,] = 2Gh c0 kb/vp  (6.30) 

tends to form on the plane y = 0 towards which the suspended spheres are driven. 
If kb % 1, the situation is more complicated because the bulk velocity is driven by 

the variation of concentration for lyl < &(t) as well as by the jumps in c across 
y = 2 & ( t ) .  The total variation of concentration however is confined to layers of 
thickness k-l on y = f Y,(t) ,  and the conductivity distribution may be approximated 

c ( y ,  t )  = co[l -H(y-Y,)+(b-Y,)S(y-Y,)I, (6.31) 

by 

where H ( z )  is the Heaviside function. A simple calculation then gives 

(6.32) 

so that now a vortex sheet appears on y = &(t) .  Of course in reality, this vortex sheet 
is 'smoothed' through the layer of thickness k- l .  

The two situations are sketched in figure 8 ( a ,  b ) .  
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7. Conclusions 
We have shown that a single conducting particle placed in a time-periodic 

magnetic field of the form Re (do(x) e-iwt) in general experiences a force F and a 
torque G, which are functions of the position x of the centre of volume of the particle. 
The force F has a natural decomposition F = F + P, where V A F = 0, V - I;I) = 0 ; 
and if the relationship between the induced dipole moment 5 and B is isotropic (as 
for a spherical particle) then there is a simple relationship between F" and G, namely 

P + ; V  A G = 0 .  

If two or more particles are suspended in a viscous fluid and subjected to such a 
field, then each particle will move in response to the force and torque acting on it and 
will at the same time be convected by the Stokes flow (a superposition of Stokeslets 
and couplets) induced by the other particles. Examples of such interactions are given 
in $93 and 4 for the particular case of a uniform rotating field, in which case there is 
a compelling analogy with the classical problem of interaction of point vortices. In 
particular, the motion of four or more spheres must in general exhibit chaos. 

When a suspension of particles is considered, it is shown that the condition (7.1) 
implies that in any region in which the concentration c is uniform there is no net local 
force to drive a bulk flow. Bulk flow can be driven only through interaction of the 
body torque distribution C? with the spatial gradient of c through a term -$ A Vc 
in the bulk equation of motion. Inhomogeneities of c are generated by the 'levitation ' 
force FL through a process analogous to sedimentation in a gravitational field. Two 
examples of flows driven by such a combination of effects are analysed in $6. 

An initial aim of this investigation was to determine whether a homogeneous 
suspension could be set in rotation by a rotating magnetic field, as happens for a 
homogeneous fluid conductor (Moffatt 1965). The results of $85, 6 show that a 
uniform rotating field acting on a homogeneous suspension will generate no bulk 
flow ; but that rotation can be induced by a rotating multipole field ; and similarly 
that bulk transport can be generated by a travelling field, although only with an 
accompanying development of strong inhomogeneity in the suspension. 

If the constituent particles of the suspension do not have spherical, or equivalent, 
symmetry, so that the relation between j l  and B,, although linear, is non-isotropic, 
then (7 .1)  no longer holds, and more subtle effects may be anticipated. For example, 
if the particles are needle-shaped, then as a particle rotates under the action of a 
torque G, the induction tensor aij in the relationship between ,Li and Bo,will become 
time-dependent and the force and torque on the particle will change accordingly. 
Determination of the motion of such a particle is then quite a complex problem ; but 
this is just a preliminary to understanding the behaviour of a suspension of such 
particles. 

There are certain obvious points of contact in all this with the theory of 
ferromagnetic suspensions (Rosensweig 1985) in which microscopic dipoles respond 
to the direction and strength of an applied magnetic field, whether steady or 
unsteady. The novel features in a suspension of conducting particles are that the 
dipole moments are themselves induced by time-variation of the applied field and 
that the relation between ji and B,, is then linear. These features lead to a class of 
problems that have some fundamental interest, and that may have some practical 
application in relation to metallurgical processing. 
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Appendix A. Justification of (2.10) 

unperturbed field Yo@) in Taylor series 
Choosing origin at  the centre of volume of the body, we may expand the 

A A 1 
'y,(x) - YO(()) = b< xi + $ i j  xi x5 +!dig, x( xj xk + . * * 9 

the corresponding expansion for Bo(x) being 

BOf(x) = b,+cUx,++i3kx,x,+.. . .  

Here, b, = B,,(o), ci, = (aBoi/ax,)x-o, etc. 

and obviously C i j  = C,$, cii = 0, 

with similar constraints on higher-order coefficients. 
The induced currents in the body perturb this external field to the form 

4= 

where 

i.e. a sum of dipole, quadrupole and higher-order ingredients. The field outside the 
body is then B = Bo+Bl where 

The mean Lorentz force distribution in the body is 

l a  
2 ax, 

f i  = $Re ( j  A 8*), = --%,, 

where poT,  = Re (&B;-ilflz8,,), (A 9) 

the Maxwell stress tensor. Since J = 0 outside the body, the total force F and couple 
G may be expressed as surface integrals over a sphere A of radius R containing the 
body : 

These expressions must obviously be independent of R ;  hence the only part of q, 
contributing to (A 10) must be that part (Ti?) say) proportional to r-2,  and the only 
part contributing to (A 11) must be that part (Ti:)) proportional to r-3. 

It is easy to see that the leading-order contribution to TiF) comes from interaction 
of the fields c6,xj and ,l, (a2/ax ,  ax j )  ( l /r) ,  and the leading-order contribution to q?) 
comes from interaction between 23, and $, @*/axi ax,) ( l / r )  ; explicitly, at leading 
order, 
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and 

Hence by substitution in (A 10) and (A 11) respectively, F and G may be calculated. 
With repeated use of the isotropic integral 

we find 

which are, as expected, identical with (2.10) (using (A 3)). 
This is of course reassuring, but it has the added bonus that higher-order terms in 

( U / L ) ~  may be obtained if required. The correction to Fi, of order (a/L)*,  involves the 
product ,djkd&., or equivalently a term of the form 

Similarly, the correction to G, at order (a/L)2 is 

Appendix B. Determination of a(h) for a spherical particle 
Since a is independent of Bo(x), we may assume that B0 is uniform and real, so that 

the applied field is B0 coswt. For r > a (where a is the radius of the sphere), the 
modified magnetic potential is then 

where b = Bo, and a is as defined in (2.9). 
The induction problem is most easily solved in terms of the scalar field P ( x )  defined 

by 

B = v A v A ( x ~ ( x ) ) ,  (B 2) 

which, for r > a, is related to Y by 

Hence, 

a 
Y = P + ( x -  V ) P  = -(rP). 

ar 

P = ( b .  x) ( i+a( ;J  (r > a) .  

Unlike Y, P is defined also for r < a, and there satisfies 

VaP = - iwpo VP ( r  < a).  
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Moreover, continuity of B across r = a is satisfied provided 

[PI = [tlP/tlr] = 0 across r = a.  

The solution of (B 5 )  regular at  r = 0 is 

where 7 = ( l + i ) h  

and 
sinz cosz 

z2 x 
j , (Z)  = ---, 

the spherical Bessel function of order one. The continuity conditions (B 6) now give 

Bjl(17) = *+a, P17j317) = i-% (B 10) 

so that, after some simplification, 

which together with (B 8), determines a(h) = a(')(A) + ia")(h). The real and imaginary 
parts of (B 11) give the results (2.29) and (2.30). 

The solution as found here was first described by Lamb (1883) as part of a general 
study of electromagnetic induction in a spherical conductor. 
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